B4C-Al Composites Fabricated by the Powder Metallurgy Process
نویسندگان
چکیده
Due to the large thermal neutron absorption cross section of 10B, B4C-Al composites have been used as neutron absorbing materials in nuclear industries, which can offer not only good neutron shielding performance but also excellent mechanical properties. The distribution of B4C particles affects the mechanical performance and efficiency of the thermal neutron absorption of the composite materials. In this study, 15 wt % B4C-Al and 20 wt % B4C-Al composites were prepared using a powder metallurgy process, i.e., ball milling followed by pressing, sintering, hot-extrusion, and hot-rolling. The yield and tensile strengths of the composites were markedly increased with an increase in the milling energy and the percentages of B4C particles. Microstructure analysis and neutron radiography revealed that the high-energy ball milling induced the homogeneous distribution of B4C particles in the Al matrix and good bonding between the Al matrix and the B4C particles. The load transfer ability and mechanical properties of the composites were consequently improved. The results showed the high-energy ball milling process is an appropriate fabrication procedure to prevent the agglomeration of the reinforcement particles even if the matrix to reinforcement particle size ratio was nearly 10.
منابع مشابه
Characterization Of Particulate-Reinforced Aluminium 6061 / Boron Carbide Composites
Aluminum-based metal matrix composite (MMC) materials are used in the design of ground transportation vehicles and aircraft. Compared with conventional, unreinforced alloys, composite materials usually exhibit higher strength, both at ambient and elevated temperatures, as well as good fatigue strength and wear resistance. MMCs could be produced by variety of methods such as Stir cast, Liquid In...
متن کاملCOMPARISON OF MECHANICAL AND ELECTRICAL PROPERTIES OF PIEZOELECTRIC COMPOSITES PZT/ZnO AND PZT/Al FABRICATED BY POWDER METALLURGY
Lead zirconate titanate (PZT) as a piezoelectric ceramic has been used widely in the fields of electronics, biomedical engineering, mechatronics and thermoelectric. Although, the electrical properties of PZT ceramics is a major considerable, but the mechanical properties such as fracture strength and toughness should be improved for many applications. In this study, lead monoxide, zirconium ...
متن کاملFABRICATION OF Al-SiCp COMPOSITES THROUGH POWDER Metallurgy Process and Testing Of Properties
Metal matrix composites are the class of composite materials finding vast applications in automotive, aircraft, defense, sports and appliance industries. A horizontal ball mill has been fabricated for milling of aluminum and SiC particles. The change in powder particle morphology during mechanical alloying of Aluminum and SiC powders using horizontal ball mill was studied. Al-SiCp composites wi...
متن کاملRecent Developments on UltRasonic cavitation BaseD soliDification pRocessing of BUlk magnesiUm nanocomposites
Magnesium based metal matrix composites (MMCs) have been extensively studied as an attractive choice for automotive and aerospace applications due to their low density and superior specific properties including strength, stiffness and creep resistance. Xi et al [1] studied the Ti6Al-4V particulate (TAp) reinforced magnesium matrix composite which is fabricated by powder metallurgy route. The te...
متن کاملEffect of Particle Size on the Structural and Mechanical Properties of Al–AlN Nanocomposites Fabricated by Mechanical Alloying
Nanostructured Al composites with 2.5 wt.% aluminum nitride (AlN) were fabricated by powder metallurgy using mechanically milled aluminum powder mixed in a planetary ball mill with different particle sizes of AlN (50 nm and 1 μm) as reinforcement. After 20 h milling, the powders were die-pressed uniaxially in a steel die and then sintered at 670 °C for 2 h. The morphologies and properties of th...
متن کامل